Device-to-Device Communications for Future Cellular Networks : Challenges, Trade-Offs, and Coexistence
نویسنده
چکیده
The steep growth in mobile data traffic has gained a lot of attention in recent years. With current infrastructure deployments and radio resources, operators will not be able to cope with the upcoming demands. Consequently, discussions of the next generation of mobile networks, referred to as the fifth generation (5G), have started in both academia and industry. In addition to more capacity, stringent requirements for improving energy efficiency, decreasing delays, and increasing reliability have been envisioned in 5G. Many solutions have been put forward, one of them being device-to-device (D2D) communications where users in close proximity can transmit directly to one another bypassing the base station (BS). In this thesis, we identify trade-offs and challenges of integrating D2D communications into cellular networks and propose potential solutions. To maximize gains from such integration, resource allocation and interference management are key factors. We start by introducing cooperation between D2D and cellular users in order to minimize any interference between the two user types and identifying the scenarios where this cooperation can be beneficial. It is shown that an increase in the number of cellular users within the coverage area and in the size of the cell is associated with a higher probability of cooperation. With this cooperation, we can potentially increase the number of connected devices, reduce the delay, increase the cell sum rate, and offload an overloaded cell. Next, we consider D2D communications underlaying the uplink of cellular networks. In such a scenario, any potential gain from resource sharing (time, frequency, or space) is determined by how the interference is managed. The quality and performance of the interference management techniques depend on the availability of the channel state information (CSI) and the location of nodes as well as the frequency of updates regarding such information. The more information is required, the more signaling is needed, which results in higher power consumption by the users. We investigate the trade-off between the availability of full CSI, which necessitates instantaneous information, and that of limited CSI, which requires infrequent updates. Our results show that with limited CSI, a good performance (in terms of the sum rate of both user types) can be achieved if a small performance loss is tolerated by cellular users. In addition, we propose a novel approach for interference management which only requires the information on the number of D2D users without any knowledge about their CSI. This blind approach can achieve a small outage probability with very low computational complexity when the number of scheduled D2D users is small. We then study the problem of mode selection, i.e., if a user should transmit in the D2D mode or in the conventional cellular mode. We identify the decision criteria for both overlay and underlay scenarios with two different objectives. We find out
منابع مشابه
Performance Analysis of Device to Device Communications Overlaying/Underlaying Cellular Network
Minimizing the outage probability and maximizing throughput are two important aspects in device to device (D2D) communications, which are greatly related to each other. In this paper, first, the exact formulas of the outage probability for D2D communications underlaying or overlaying cellular network are derived which jointly experience Additive White Gaussian Noise (AWGN) and Rayleigh multipat...
متن کاملAn Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks
Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...
متن کاملA Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment
With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...
متن کاملAn Investigation of LTE Broadcast
Broadcast and broadband communications have undoubt- edly become a part of today’s social life. Accessibility of content of interest to the audience at any place and at any time regardless of the type of content consumer device can have an effective contribution to the desire of the audience to use of the broadcast content. The HD and Ultra HD qualities, the desire for demand-driven application...
متن کاملAn Investigation of LTE Broadcast
Broadcast and broadband communications have undoubt- edly become a part of today’s social life. Accessibility of content of interest to the audience at any place and at any time regardless of the type of content consumer device can have an effective contribution to the desire of the audience to use of the broadcast content. The HD and Ultra HD qualities, the desire for demand-driven application...
متن کامل